

Climate neutrality, the circular economy, and earth materials

Dr. John Thompson, PetraScience Consultants Inc., Vancouver, Canada and Honorary Professor of Sustainable Resources, University of Bristol, UK **Prof. Frances Wall,** Camborne School of Mines, University of Exeter, UK

Earth Materials for a Sustainable and Thriving Society
UNESCO Lecture Series

Key points

Reimagining metal supply to meet demand and societal expectations

- Climate neutrality energy transition, metal use, and supply
- Circular economy metal reuse and recycling necessary but challenging
- Responsible primary extraction technical and social change
- Joining up the value chain optimizing collaboration from source to customer to reprocessor

Climate, energy, and metals

Increasing and increasing......

Arndt et al., 2017 – data from USGS

Metal production and reserves – supply

- Increasing production
- Increasing reserves
- Reserve/production ratio relatively constant
- Metal availability reserves and resources – is not an issue in the short to mid-term
- Providing metal with minimum impact is the challenge

Adapted from Jowitt et al., 2020; USGS data

UN Sustainable Development Goals – SDGs

- Mining and metal production linked to all SDGs
- Metal use is critical to several SDGs:
 - Major component in renewable energy and electrification of transportation – SDGs: 1, 6, 7, 9, 11, 12 and 13
- Negative impact of metal extraction and use must be reduced:
 - SDGs: 3, 8, 11, 13, 14, 15, 16

Circular economy – importance and challenges

Circular economy?

RECYCLING

Recycling Input Rates (EU Raw Materials Scoreboard)

Circular economy?

RE-USING MINE TAILINGS

Panasqueira Mine, Portugal (F. Wall)

- 350 Gt produced worldwide each year
- 20 times all municipal solid waste
- 70 billion elephants (Earth to Mars)
- by far our largest wasteform

Vallero & Blight (2019). OI: <u>10.1016/B978-0-12-815060-3.00006-2</u>

RENEWABLES FLOW MANAGEMENT

Ellen MacArthur Foundation
Circular economy systems diagram (February 2019)
www.ellenmacarthurfoundation.org
Drawing based on Braungart & McDonough,
Cradle to Cradle (C2C)

'Circular economy is based on the principles of designing out waste and pollution, keeping products and materials in use, and regenerating natural systems.'

(Ellen MacArthur Foundation)

'Designing out waste and pollution'

Don't' forget earth materials determine many characteristics of a mine

Geology

- Grade of ore
- Composition and mineralogy of the ore
- Size of ore deposit
- Depth of ore deposit
- Location of ore deposit

Mining and Processing

Resource efficiency

Energy use

Carbon footprint

Water use

Environmental contamination

Financial profitability

Biodiversity and landscape degradation

Health and safety and well-being of work force

Community interaction and well-being Contribution to national economy Compliance with regulatory frameworks Land use during and after mining

'designing out waste and pollution'

Start early with life cycle assessment

Start early with life cycle assessment

'keeping products and materials in use'

Sara Kurfess

https://www.mining.com/rio-launches-its-first-closed-loop-recycling-service courtesy of rio tingo

Do you need a new smartphone?

Rio Tinto customers in North America will have a new scrap take-back solution for production of high quality alloys made with recycled content.

'and regenerating natural systems'

'Sustainable mining' – two views – both good!

Sustainable mining –view 2

Sustaining the life of the metals – thinking ahead to where the metals will go

Efficient and responsible primary production

- Discovery data
- Extraction challenges and solutions
- Critical minor metals and recycling

Discovery challenge

Zircons – chemical characteristics

→ magma-fluid history

cs CS

- Need for new discoveries "quality" resources
- Select the best area to explore understanding metallogeny and fertility

"Quality" resource:

- Metal content grade
- Size and geometry
- Suitability for mining
- Good recovery of metals
- Environmentally benign
- No use-conflicts

Copper deposits – types with distinct characteristics concentrated in different regions – countries

Remote data

- Geophysics
 - Satellite and airborne
 - Ground surveys
- Remote sensing
 - Satellite and airborne multispectral data
- Geochemistry
 - Large-scale sampling –
 streams, lakes, soils
 - Microbial data

Discovering quality resources

- Integrated knowledge and technology
 - Field work geology, geochemistry, geophysics
 - Real time data field sensors, drones
 - Data integration, AI/ML
- Drilling: rapid testing, minimum impact

Mineral alteration data

Spectral data – raw SWIR assemblages

Interpreted alteration mineralogy

Mineral distribution: aiSIRIS* Spectral Contribution ('SC') data

Machine learning spectral recognition software – library of >1M spectra

^{*} Artifical Intelligence Spectral InfraRed Interpretation System

Creating quality

Data collection

Interpretation

Integration

Understanding

Mining challenge – scale

- Breaking, moving and grinding rocks energy requirements
- Vast amounts of waste long-term management, unacceptable disasters

Innovation and solutions

- Electrification
- Automation
 - Improved safety and efficiency
- Improving selectivity
 - Separate metal-rich rocks from waste during mining
 - Less rock processed, less waste
 - → Lower energy consumption per unit
- Digital transformation smart mines
- Mine to metal

In situ recovery – no mining, no waste

- Dissolve the metals in place underground
- Already used for potash and uranium
- Advantages
 - Limited footprint, low cost
- Challenge
 - Water management

Capturing by-product metals

Metals in porphyry copper deposits

VIII

Н	IΙΑ	_										III B	IV B	VВ	VI B	VII B	Не
Li	Be											В	С	N	0	F	Ne
Na	Mg	III A	IV A	VA	VI A	VII A	_	VIII A		ΙB	IIΒ	Al	Si	Р	S	CI	Ar
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	ı	Xe
Cs	Ва	Lr	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn

Cu concentrate – products, byproducts, byproducts/deleterious elements

Mo concentrate – products, byproduct

Smelting & refining – minor metals & recycling

Trail, BC

Mineral resources – a critical input

- Increasing metal demand –
 driven in part by SDG goals
- Efficiency and recycling critical
- New resources will be required
- Responsible discovery, delivery and recycling
- Input to the circular economy –
 must be aligned with SDG goals

Joining up the value chain

new & recycled

raw material

Vision

- Mining a valuable and responsible input
- Efficient use of metals and design of materials
- Sustainable use, capture and recycling of metals minimum loss
- Completion of the circular economy
- Mining companies become metal/material suppliers/owners within an integrated circular economy

within an integrated circular economy

materials stewardship

Collaboration

- Challenges complicated and complex
 - Maximize benefits and minimize impacts
 - Meet societal needs metal use and ESG and SDG

Collaboration and partnerships – necessary

- Indigenous people and communities, companies, technology providers and consumers
- Different sectors and disciplines

